
1D Cahn–Hilliard equation for modulated phase systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 205102

(http://iopscience.iop.org/1751-8121/43/20/205102)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/20
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 205102 (7pp) doi:10.1088/1751-8113/43/20/205102

1D Cahn–Hilliard equation for modulated phase
systems

Simon Villain-Guillot
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Abstract
Formation of modulated phase patterns can be modelized by a modified Cahn–
Hilliard equation which includes a non-local term preventing the formation
of macroscopic domains. Using stationary solutions of the original Cahn–
Hilliard equation as analytical ansatzs, we compute the thermodynamically
stable period of a 1D modulated phase pattern. We find that the period scales
like the power −1/3 of the strength of the long-range interaction.

PACS numbers: 47.54.Bd, 64.70.D−, 64.75.−g, 81.30.−t

1. Introduction

When a homogenous system is led suddenly into a linearly unstable configuration, it will
spontaneously segregate into two different states which are more stable. These states are
characterized by two distinct values of an order parameter. The leading instability selects
a modulation of the initially uniform order parameter at a well-defined wavelength. This
instability will grow exponentially and rapidly saturate because of nonlinearity. The resulting
micro-segregated pattern is composed of well-defined interfaces (or interphases) delimiting
monophasic domains containing the stable phases. These interfaces will then interact with
each other and coalesce, during a much slower, self-inhibiting process, where the number
of domains will reduce whereas their typical size will increase. The result of this so-called
Ostwald ripening can be of two sorts, depending on the presence or absence of long-range
interactions. Either the process continues until there remains a single interface separating
two semi infinite domains, one for each new stable phase (macro-segregation), or, due to the
long-range interactions, the coarsening is interrupted: the final pattern is micro-segregated
with a spatially modulated order parameter of finite period [1]. The thermodynamical stability
of such a modulated phase results from the competition between two types of interactions: a
short-range interaction which tends to make the system locally homogeneous together, and a
long-range one, or a non-local one, which allows domain walls, preventing the formation of
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macroscopic domains when they are energetically disadvantageous (for recent application to
proteins, see [2]). The aim of this paper is to use a family of exact solutions of the Ginzburg–
Landau equation as an ansatz to look at the micro-segregation and to compute the period of
these thermodynamically stable modulated patterns in the 1D case. In the first part, we will
present briefly the Cahn–Hilliard model, mainly to fix the notation and to explain why this
model predicts a complete coarsening ending with a single interface. In the second part, we
will discuss the effect of adding long-range interactions within Oono’s modified Cahn–Hillard
dynamics. As a conclusion, we will compare with the results obtained with other models.

2. The simple Cahn–Hilliard model

2.1. Spinodal decomposition

The Cahn–Hilliard (or conservative time-dependant Ginzburg–Landau) equation is a modified
diffusion equation which reads in its dimensionless form

∂�

∂t
(r, t) = ∇2 δFGL(�)

δ�
= ∇2(−ε�/2 + 2�3 − ∇2�). (1)

The real order parameter � can correspond to the fluctuation of density of a fluid around its
mean value during a phase separation [3], to the dimensionless magnetization in a ferromagnet
[4], or to the local concentration of one of the components of a binary solution (metal alloys
[5, 6], polymers [7] or thin films of copolymers [8]). ε is the dimensionless control parameter
of the system; in the systems cited above, it is the reduced temperature (ε = Tc−T

Tc
where

Tc is the critical temperature of the phase transition). But the Cahn–Hilliard is a standard
model which has applications to phase transition in liquid crystals [9], segregation of granular
mixtures in a rotating drum [10] or formation of sand ripples [11]. A conservative noise can
be added to account for thermal fluctuations [12, 13]; but in this paper, we will only consider
the original noiseless (C-H) equation.

This partial differential equation admits homogeneous stationary solutions which are
extrema of the symmetric Landau potential V (�) = −ε

4 �2 + 1
2�4. For negative ε, there is

only one homogenous extremum � = 0 which is linearly stable (it is a minimum for V (�)).
When quenching from a negative control parameter ε to a positive one, the Landau potential
V (�) exhibits now two wells and the system experiences a pitchfork bifurcation: the � = 0
solution becomes an unstable maximum while two other symmetric stable minima appear
�b = ±

√
ε

2 .
The stability of the homogeneous solution � = 0 was studied by Cahn and Hilliard [5]

considering � as a sum of Fourier modes:

�(r, t) =
∑

q

φq eiq·r+σ t (2)

where φq is the Fourier coefficient at t = 0. By linearizing equation (1) around � = 0 (i.e.
neglecting the nonlinear term �3), they obtained for the growth factor σ(q):

σ(q) =
(ε

2
− q2

)
q2. (3)

This result shows immediately that � = 0 is linearly stable for ε < 0, as all fluctuations
are damped. In contrast, for positive ε, a band of Fourier modes are unstable since σ(q) > 0
for 0 < q <

√
ε/2. The ignition of the instability will be characterized by the most unstable

mode qC-H = √
ε/2. This first step of the dynamics is called spinodal decomposition. It will

end when the profile � will reach a stationary solution of (1) of period λC-H = 4πε− 1
2 .
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If we look for symmetric solutions of the one-dimensional (G-L) equation

−ε

2
� + 2�3 − ∂2�

∂x2
= 0 (4)

satisfying 〈�〉 = 0, there exists, for ε > 0, a whole family of solutions

�k,ε(x) = k
Sn

(
x

ξ
, k

)
with ξ = 
−1 =

√
2
k2 + 1

ε
(5)

where Sn(x, k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family
of so-called soliton-lattice solutions [14] is parametrized by ε and by the Jacobian modulus
or ‘segregation parameter’ k ∈ [0, 1]. These solutions satisfy equation (4) or equivalently, if
integrated over x:(

∂

∂x
�k,ε

)2

= �4
k,ε − ε

2
�2

k,ε +
k2

ξ 4
. (6)

They describe periodic patterns of period

λ = 4K(k)ξ, where K(k) =
∫ π

2

0

dt√
1 − k2 sin2 t

(7)

is the complete Jacobian elliptic integral of the first kind. Together with k, K(k) characterizes
the segregation, defined as the ratio between the size of the homogeneous domains, L = λ/2,
and the width of the interface separating them, 2ξ .

This family of solutions interpolates between the sinusoidal function (when k = 0),
which corresponds to the distribution of the order parameter shortly after the quench, and
the periodic step function (when k is closed to 1), more appropriate to describe the strong
segregation regime as we will see below, both for a single interface and for a modulated phase
system in the low-temperature region.

Equation (7) and the relation ξ = 
−1 enable one to rewrite this family as

�k,λ(x) = 4K(k)k

λ
Sn

(
4K(k)

λ
x, k

)
. (8)

2.2. Ostwald ripening

Among this family of stationary solutions, the thermodynamically stable solution will
minimize the energy density. Using equation (6), together with

∫ K

0 Sn2(x, k) dx = K−E
k2

and
∫ K

0 Sn4(x, k) dx = 2+k2

3k4 K − 2E 1+k2

3k4 , we can write when ε > 0

FGL(k, λ) = 1

λ

∫ λ

0

1

2
(∂x�(x))2 − ε

4
�2(x) +

1

2
�4(x) dx (9)

=
(

4K

λ

)2
[

−ε

4

(
1 − E

K

)
+

(
1 + 2k2

6
− E

6K
(1 + k2)

)(
4K

λ

)2
]

. (10)

So F(k = cste, λ) is minimum when

ε =
(

8K

λk

)2
(

1 + k2

3
+

k2

3
(
1 − E

K

))
, (11)

whereas using equations (5) and (7), we find that the three parameters λ, k and ε are related to
each other through the state equation

ε = 1 + k2

2

(
8K(k)

λ

)2

, (12)
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Figure 1. Plot of F(k, λ). One sees that in the (k, λ) space, the partial derivatives ( ∂F
∂k

)λ and ( ∂F
∂λ

)k
never vanish simultaneously. As a consequence, there is no global minimum except for k → 1 and
λ → ∞, i.e. for complete phase segregation.

(This figure is in colour only in the electronic version)

which is the constraint for which F(k, λ = cste) is minimum. Thus, as nowhere in the
(k, λ) space

(
∂F
∂k

)
λ

and
(

∂F
∂λ

)
k

vanish simultaneously, there is no global minimum, except for
k → 1 and λ → ∞, i.e for complete phase segregation (see figure 1). Therefore, after
saturation of the spinodal decomposition, the stationary state composed of domains of size
LC-H = 2πε− 1

2 , which ends the first step of the dynamics, is unstable with respect to period
doubling: coarsening will drive the system from a micro-segregated pattern of a typical period
λC-H to a single-interface pattern. Minimization of the interfacial energy is the only motor of
the process of Ostwald ripening [13, 15].

3. Case of the modulated phase systems: Oono’s model

If we now want to treat the effect of a long-range interaction, or a non-local one, which is
known to be responsible for the stabilization of the modulated phase (or spatially modulated
order parameter [1]), we can no longer use a simple Ginzburg–Landau approach where the
interactions are described by local terms, such as (∇�)2 and (∇2�)2 like in the Swift–
Hohenberg model. Indeed, because of the truncation in the gradient expansion [16, 17], below
a certain temperature, the macroscopic or global segregation into two semi-infinite regions (one
unique interface) will always be energetically favored compared to the microphase separation
[16, 18]. In contrast, a correct description of the strong segregation limit which fully takes
into account the long-range interactions shows that the modulated phase structure remains the
thermodynamical stable phase even far below Tc [19] (in the case of Langmuir monolayer, an
infinite number of domains have to be taken into account [20]).

An alternative approach has been proposed by Oono [21]. It relies on the study of
dynamics of the phase transition. He considered a free energy density already proposed by
Leibler [22]:

F(�) = FGL + Fint = 1

2
(∇�(r))2 − ε

4
�2(r) +

1

2
�4(r) +

∫
�(r ′)g(r ′, r)�(r) dr ′ (13)

4
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where the long-range interactions are described by g(r ′, r) = β2

4π |r ′−r| in D = 3, or −β2|x ′−x|
in D = 1. It corresponds to a repulsive interaction when �(r ′) and �(r) are of the same sign
and thus favors the formation of interphases. If we want to study the conservative dynamics
of this phase separation, we use the Cahn–Hilliard equation:

∂�

∂t
= ∇2

r

(
δF (�)

δ�

)
= ∇2

r

(
−ε

2
� + 2�3 − ∇2� +

∫
�(r ′)g(r ′, r) dr ′

)
. (14)

If one recalls that the Green’s function associated with the Laplacian operator ∇2
r is −1

4π |r ′−r| in
3D, and |x ′ − x|/2 in 1D, the preceding equation then transforms into

∇2
r

∫
�(r ′)g(r ′, r) dr ′ =

∫
�(r ′)∇2

r g(r ′, r) dr ′ = −β2
∫

�(r ′)δ(r ′, r) dr ′ = −β2�(r)

(15)

which leads to the following modified Cahn–Hilliard dynamics, which is often used for
numerical simulations:

∂�

∂t
=

(
∇2 δFGL(�)

δ�

)
− β2� = ∇2

(−ε

2
� + 2�3 − ∇2�

)
− β2�. (16)

One sees that all the long-range interactions are now in the last term −β2�: if � is constant
over a macroscopic domain such that the first part of the right-hand side vanishes, this last
term will try to pinch or split this domain into two. It thus always prevents the formation of
infinite homogeneous domains and favors the modulation even for large ε (i.e. T much lower
than Tc), as we will also show below. Note that even with the addition of this new term to the
usual Cahn–Hilliard equation, the dynamics remains in the class of the conservative models,
as it derives from a conservation equation.

If we look at the linear stability analysis of the homogenous solution � = 0, considering
again � as a sum of Fourier modes, we find almost the same results as in the original work of
Cahn and Hilliard, except that the amplification factor σ(q) now becomes

σ(q) =
(ε

2
− q2

)
q2 − β2. (17)

This shows immediately that � = 0 is linearly instable if β < ε/4 (as σ(q) > 0), with

a band of unstable Fourier modes ε
4 −

√(
ε
4

)2 − β2 < q2 < ε
4 +

√(
ε
4

)2 − β2. The most

unstable mode remains qC-H = 0.5 ε
1
2 independently of β. Therefore, during the initial stage

of the dynamics (the spinodal decomposition), the homogeneous domains appear with a size
LC-H = 2πε− 1

2 , as in the usual Cahn–Hilliard dynamics.
The stationary state composed of domains of size LC-H which ends the spinodal

decomposition is still unstable with respect to period doubling [13, 15], leading again to
the process of Ostwald ripening. But one sees that, contrary to the simple Cahn–Hilliard
case where this process continues until a complete phase segregation is reached, the long

wavelength modulations are now stable for q2 < ε
4 −

√(
ε
4

)2 − β2: because the interaction is
long range, no matter how small β is, there will always be a finite region around q = 0 where
σ(q) < 0. This explains qualitatively why, for any finite value of β, the dynamics will end in
a micro segregated regime, or modulated phase, as it is observed numerically and as we will
now discuss quantitatively.

In D = 1, this long-range interaction term can be rewritten as [23]

Fint = −β2

λ

∫ λ
2

0

∫ λ
2

0
�(x ′)|x ′ − x|�(x) dx dx ′. (18)

5
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Figure 2. Graph of λ, the period of the modulated phase, as a function of the strength of the
long-range interaction. This period is obtained by numerical minimization in k of the total energy
density FGL(k) + Fint(k, β2). One sees that the resulting points scale like (β̃2)−1/3.

If we look for a solution in the ansatz family �k,λ(x) (8), we then obtain

Fint = −β2

λ

∫ λ
2

0

∫ λ
2

0
k2

(
4K

λ

)2

|x ′ − x| Sn

(
4K(k)

λ
x, k

)
Sn

(
4K(k)

λ
x ′, k

)
dx dx ′ (19)

= −k2β2

4K

∫ 2K

0

∫ 2K

0
|̃x ′ − x̃| Sn(̃x, k) Sn(̃x ′, k) d̃x d̃x ′. (20)

This contribution is thus independent of λ and depends only on k. Therefore, the minimization
of the free energy with respect to λ takes place only on FGL and gives, as in equation (10),

λk = 8Kε− 1
2

√
1 + k2

3
+

k2

3
(
1 − E

K

) .

The resulting FGL scales as ε2. Taking into account Fint, we only have to minimize with
respect to k the function FGL(k) + Fint(k), which can be done numerically for different values
of β̃ = β/ε. Contrary to the simple case depicted in figure 1, the minimum in energy is
now no longer for the value k = 1, i.e. the period of the pattern remains finite. As plotted in
figure 2, the resulting λ(β̃2) scales like (β̃2)−1/3.

4. Conclusion

This result shows that the dynamics proposed by Oono is not in the class considered by Politi
and Misbah in their study of interrupted coarsening [24], as the minimum of the total free
energy is not associated with the maximum of the amplitude of the modulation. Indeed, even
if Oono’s equation is singular at β̃ = 0, taking the family �k,λ(x) as an ansatz leads to a good
description of the 1D profile. Numerically (especially for small β̃) we find that the solution is
close to �k,λk

(x), with k given by the minimization of FGL(k, λk)+Fint(k). Nevertheless, if one
looks carefully, the domains are no longer homogeneous but present a small concavity. The
interface profile is no longer monotonous, leading to a breakdown of Politi and Misbah analysis
which would have predicted a scaling of λ in ln(1/β̃) [25]. Moreover, if we impose boundary
conditions (i.e. if we artificially impose a fixed periodicity as it is the case in a numerical
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experience), this concavity becomes more and more pronounced when β̃ grows, and which
eventually leads to a non-physical domain splitting (λ → λ/2) if the imposed periodicity is
too wide, i.e. closer to 2λ(β̃2) than λ(β̃2). Such a splitting in a numerical experience (the
inverse of the period doubling) enables one to reduce the total energy by approaching a period
closer to the optimal one λ(β̃2).

Contrary to a gradient expansion approximation [16, 18] where, far enough from the
critical point, a global phase segregation is favored, we find here that the modulated phase
remains energetically favored even for large values of ε/β.
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